Numerical Implementation of Gradient Algorithms
نویسندگان
چکیده
A numerical method for computational implementation of gradient dynamical systems is presented. The method is based upon the development of geometric integration numerical methods, which aim at preserving the dynamical properties of the original ordinary differential equation under discretization. In particular, the proposed method belongs to the class of discrete gradients methods, which substitute the gradient of the continuous equation with a discrete gradient, leading to a map that possesses the same Lyapunov function of the dynamical system, thus preserving the qualitative properties regardless of the step size. In this work, we apply a discrete gradient method to the implementation of Hopfield neural networks. Contrary to most geometric integration methods, the proposed algorithm can be rewritten in explicit form, which considerably improves its performance and stability. Simulation results show that the preservation of the Lyapunov function leads to an improved performance, compared to the conventional discretization.
منابع مشابه
A New Hybrid Conjugate Gradient Method Based on Eigenvalue Analysis for Unconstrained Optimization Problems
In this paper, two extended three-term conjugate gradient methods based on the Liu-Storey ({tt LS}) conjugate gradient method are presented to solve unconstrained optimization problems. A remarkable property of the proposed methods is that the search direction always satisfies the sufficient descent condition independent of line search method, based on eigenvalue analysis. The globa...
متن کاملA Parallel Implementation of an Iterative Substructuring Algorithm for Problems in Three Dimensions
Numerical results from a parallel implementation of an iterative substructuring algorithm are reported. The algorithm is for solving scalar, self-adjoint elliptic partial diierential equations in three dimensions. Results are given for two variants of the algorithm. In the rst variant, exact interior solvers are used; in the second, one multigrid V-cycle is used to approximately solve the inter...
متن کاملExperiments with Parallelising Numerical Applications via Desolibraries (extended Abstract)
DESOLibraries are \delayed evaluation, self-optimising" parallel libraries of numerical routines. The aim is to allow users to parallelise computationally expensive parts of numerical programs by simply linking with a parallel rather than sequential library of subroutines. The library performs interprocedural data placement optimisation at runtime, which requires the op-timiser itself to be ver...
متن کاملMaximum likelihood estimation of Gaussian graphical models: Numerical implementation and topology selection
We describe algorithms for maximum likelihood estimation of Gaussian graphical models with conditional independence constraints. It is well-known that this problem can be formulated as an unconstrained convex optimization problem, and that it has a closed-form solution if the underlying graph is chordal. The focus of this paper is on numerical algorithms for large problems with non-chordal grap...
متن کاملA New Strategy for Training RBF Network with Applications to Nonlinear Integral Equations
A new learning strategy is proposed for training of radial basis functions (RBF) network. We apply two different local optimization methods to update the output weights in training process, the gradient method and a combination of the gradient and Newton methods. Numerical results obtained in solving nonlinear integral equations show the excellent performance of the combined gradient method in ...
متن کامل